domingo, 30 de agosto de 2009

LOS MONITORES

¿QUE ES UN MONITOR?

El monitor o pantalla de computadora, aunque también es común llamarle "pantalla", es un dispositivo de salida que, mediante una interfaz, muestra los resultados del procesamiento de una computadora.

COMPONENTES ELECTRONICOS QUE CONFORMAN
PRINCIPALMENTE UN MONITOR


1-CIRCUITO INTEGRADO
Un circuito integrado (CI), es una pastilla pequeña de
silicio, de algunos milímetros cuadrados de área, sobre la que se fabrican circuitos eléctricos con base a dispositivos constituidos por semiconductores y que está protegida dentro de un encapsulado de plástico o cerámica. El encapsulado posee conductores metálicos apropiados para hacer conexión entre la pastilla y un circuito impreso.

TIPOS DE CIRCUITOS INTEGRADOS

Existen tres tipos de circuitos integrados:


-Circuitos monolíticos: Están fabricados en un solo monocristal, habitualmente de silicio, pero también existen en germanio, arseniuro de galio, silicio-germanio, etc.


-Circuitos híbridos de capa fina: Son muy similares a los circuitos monolíticos, pero, además, contienen componentes difíciles de fabricar con tecnología monolítica. Muchos conversores A/D y conversores D/A se fabricaron en tecnología híbrida hasta que los progresos en la tecnología permitieron fabricar resistencias precisas.


-Circuitos híbridos de capa gruesa: Se apartan bastante de los circuitos monolíticos. De hecho suelen contener circuitos monolíticos sin cápsula (dices), transistores, diodos, etc., sobre un sustrato dieléctrico, interconectados con pistas conductoras. Las resistencias se depositan por serigrafía y se ajustan haciéndoles cortes con láser. Todo ello se encapsula, tanto en cápsulas plásticas como metálicas, dependiendo de la disipación de potencia que necesiten. En muchos casos, la cápsula no está "moldeada", sino que simplemente consiste en una resina epoxi que protege el circuito. En el mercado se encuentran circuitos híbridos para módulos de RF, fuentes de alimentación, circuitos de encendido para automóvil, etc.


2-TRANSISTORES
El transistor es un dispositivo electrónico semiconductor que cumple funciones de amplificador, oscilador, conmutador o rectificador. El término "transistor" es la contracción en inglés de transfer resistor ("resistencia de transferencia").


Actualmente se los encuentra prácticamente en todos los artefactos domésticos de uso diario: radios, televisores, grabadoras, reproductores de audio y video, hornos de microondas, lavadoras, automóviles, equipos de refrigeración, alarmas, relojes de cuarzo, computadoras, calculadoras, impresoras, lámparas fluorescentes, equipos de rayos X, tomógrafos, ecógrafos, reproductores mp3, celulares, etc.


TIPOS DE TRANSISTORES
-Transistor de punta de contacto
Fue el primer transistor que obtuvo ganancia, inventado en 1947 por J. Bardeen y W. Brattain. Consta de una base de germanio sobre la que se apoyan, muy juntas, dos puntas metálicas que constituyen el emisor y el colector. La corriente de emisor es capaz de modular la resistencia que se "ve" en el colector, de ahí el nombre de "transfer resistor". Se basa en efectos de superficie, poco conocidos en su día. Es difícil de fabricar (las puntas se ajustaban a mano), frágil (un golpe podía desplazar las puntas) y ruidoso. Sin embargo convivió con el transistor de unión (W. Shockley, 1948) debido a su mayor ancho de banda. En la actualidad ha desaparecido.


-Transistor de unión bipolar
El
transistor de unión bipolar, o BJT por sus siglas en inglés, se fabrica básicamente sobre un monocristal de Germanio, Silicio o Arseniuro de Galio, que tienen cualidades de semiconductores, estado intermedio entre conductores como los metales y los aislantes como el diamante. Sobre el sustrato de cristal, se contaminan en forma muy controlada tres zonas, dos de las cuales son del mismo tipo, NPN o PNP, quedando formadas dos uniones NP.
La zona N con elementos donantes de electrones (cargas negativas) y la zona P de aceptadores o "huecos" (cargas positivas). Normalmente se utilizan como elementos aceptadores P al Indio (In), Aluminio (Al) o Galio (Ga) y donantes N al Arsénico (As) o Fósforo (P).
La configuración de
uniones PN, dan como resultado transistores PNP o NPN, donde la letra intermedia siempre corresponde a la característica de la base, y las otras dos al emisor y al colector que, si bien son del mismo tipo y de signo contrario a la base, tienen diferente contaminación entre ellas (por lo general, el emisor esta mucho más contaminado que el colector).


El mecanismo que representa el comportamiento semiconductor dependerá de dichas contaminaciones, de la geometría asociada y del tipo de tecnología de contaminación (difusión gaseosa, epitaxial, etc.) y del comportamiento cuántico de la unión.


-Transistor de unión unipolar

Tambien llamado de efecto de campo de unión (JFET), fué el primer transistor de efecto de campo en la práctica. Lo forma una barra de material semiconductor de silicio de tipo N o P. En los terminales de la barra se establece un contacto óhmico, tenemos así un transistor de efecto de campo tipo N de la forma más básica. Si se difunden dos regiones P en una barra de material N y se conectan externamente entre sí, se producirá una puerta. A uno de estos contacrtos le llamaremos surtidor y al otro drenador. Aplicando tensión positiva entre el drenador y el surtidor y conectando a puerta al surtidor, estableceremos una corriente, a la que llamaremos corriente de drenador con polarización cero. Con un potencial negativo de puerta al que llamamos tensión de estrangulamiento, cesa la conducción en el canal.


-Transistor de efecto de campo
El
transistor de efecto de campo, o FET por sus siglas en inglés, que controla la corriente en función de una tensión; tienen alta impedancia de entrada.
Transistor de efecto de campo de unión,
JFET, construido mediante una unión PN.
Transistor de efecto de campo de compuerta aislada, IGFET, en el que la compuerta se aísla del canal mediante un
dieléctrico.


Transistor de efecto de campo MOS, MOSFET, donde MOS significa Metal-Óxido-Semiconductor, en este caso la compuerta es metálica y está separada del canal semiconductor por una capa de óxido.


-Fototransistor
Los fototransistores son sensibles a la
radiación electromagnética, en frecuencias cercanas a la de la luz.


3-SEMICONDUCTORES
Un semiconductor es una
sustancia que se comporta como conductor o como aislante dependiendo de la temperatura del ambiente en el que se encuentre.


El elemento semiconductor más usado es el
silicio, aunque idéntico comportamiento presentan las combinaciones de elementos de los grupos II y III con los de los grupos VI y V respectivamente (AsGa, PIn, AsGaAl, TeCd, SeCd y SCd). De un tiempo a esta parte se ha comenzado a emplear también el azufre. La característica común a todos ellos es que son tetravalentes, teniendo el silicio una configuración electrónica s²p².


TIPOS DE SEMICONDUCTORES


-Semiconductores intrínsecos:
Un cristal de silicio forma una estructura tetraédrica similar a la del carbono mediante enlaces covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el cristal se encuentra a temperatura ambiente, algunos electrones pueden, absorbiendo la energía necesaria, saltar a la banda de conducción, dejando el correspondiente hueco en la banda de valencia (1). Las energías requeridas, a temperatura ambiente son de 1,12 y 0,67 eV para el silicio y el germanio respectivamente.


Obviamente el proceso inverso también se produce, de modo que los electrones pueden caer desde el estado energético correspondiente a la banda de conducción, a un hueco en la banda de valencia liberando energía. A este fenómeno, se le denomina recombinación. Sucede que, a una determinada temperatura, las velocidades de creación de pares e-h, y de recombinación se igualan, de modo que la concentración global de electrones y huecos permanece invariable. Siendo "n"la concentración de electrones (cargas negativas) y "p" la concentración de huecos (cargas positivas), se cumple que:
ni = n = p
siendo ni la concentración intrínseca del semiconductor, función exclusiva de la temperatura.


Si se somete el cristal a una diferencia de tensión, se producen dos corrientes eléctricas. Por un lado la debida al movimiento de los electrones libres de la banda de conducción, y por otro, la debida al desplazamiento de los electrones en la banda de valencia, que tenderán a saltar a los huecos próximos (2), originando una corriente de huecos en la dirección contraria al campo eléctrico cuya velocidad y magnitud es muy inferior a la de la banda de conducción.


-Semiconductores extrínsecos:
Si a un semiconductor intrínseco, como el anterior, se le añade un pequeño porcentaje de impurezas, es decir, elementos trivalentes o pentavalentes, el semiconductor se denomina extrínseco, y se dice que está
dopado. Evidentemente, las impurezas deberán formar parte de la estructura cristalina sustituyendo al correspondiente átomo de silicio.


-Semiconductor tipo N:
Un Semiconductor tipo N se obtiene llevando a cabo un proceso de
dopado añadiendo un cierto tipo de átomos al semiconductor para poder aumentar el número de portadores de carga libres (en este caso negativas o electrones).


Cuando el material dopante es añadido, éste aporta sus electrones más débilmente vinculados a los átomos del semiconductor. Este tipo de agente dopante es también conocido como material donante ya que da algunos de sus electrones.

El propósito del dopaje tipo n es el de producir abundancia de electrones portadores en el material. Para ayudar a entender cómo se produce el dopaje tipo n considérese el caso del silicio (Si). Los átomos del silicio tienen una valencia atómica de cuatro, por lo que se forma un enlace covalente con cada uno de los átomos de silicio adyacentes. Si un átomo con cinco electrones de valencia, tales como los del grupo VA de la tabla periódica (ej. fósforo (P), arsénico (As) o antimonio (Sb)), se incorpora a la red cristalina en el lugar de un átomo de silicio, entonces ese átomo tendrá cuatro enlaces covalentes y un electrón no enlazado. Este electrón extra da como resultado la formación de "electrones libres", el número de electrones en el material supera ampliamente el número de huecos, en ese caso los electrones son los portadores mayoritarios y los huecos son los portadores minoritarios. A causa de que los átomos con cinco electrones de valencia tienen un electrón extra que "dar", son llamados átomos donadores. Nótese que cada electrón libre en el semiconductor nunca está lejos de un ion dopante positivo inmóvil, y el material dopado tipo N generalmente tiene una carga eléctrica neta final de cero....


-Semiconductor tipo P
Un Semiconductor tipo P se obtiene llevando a cabo un proceso de
dopado, añadiendo un cierto tipo de átomos al semiconductor para poder aumentar el número de portadores de carga libres (en este caso positivos o huecos).


Cuando el material dopante es añadido, éste libera los electrones más débilmente vinculados de los átomos del semiconductor. Este agente dopante es también conocido como material aceptor y los átomos del semiconductor que han perdido un electrón son conocidos como huecos.


El propósito del dopaje tipo P es el de crear abundancia de huecos. En el caso del silicio, un átomo tetravalente (típicamente del grupo IVA de la tabla periódica) de los átomos vecinos se le une completando así sus cuatro enlaces. Así los dopantes crean los "huecos". Cada hueco está asociado con un ion cercano cargado negativamente, por lo que el semiconductor se mantiene eléctricamente neutro en general. No obstante, cuando cada hueco se ha desplazado por la red, un protón del átomo situado en la posición del hueco se ve "expuesto" y en breve se ve equilibrado por un electrón. Por esta razón un hueco se comporta como una cierta carga positiva. Cuando un número suficiente de aceptores son añadidos, los huecos superan ampliamente la excitación térmica de los electrones. Así, los huecos son los portadores mayoritarios, mientras que los electrones son los portadores minoritarios en los materiales tipo P.

Los diamantes azules (tipo IIb), que contienen impurezas de boro (B), son un ejemplo de un semiconductor tipo P que se produce de manera natural.


4-RESISTENCIA O RESISTOR

Se denomina resistor o resistencia al componente electrónico diseñado para introducir una resistencia eléctrica determinada entre dos puntos de un circuito. En otros casos, como en las planchas, calentadores, etc., las resistencias se emplean para producir calor aprovechando el efecto Joule.

Es un material formado por carbón y otros elementos resistivos para disminuir la corriente que pasa se opone al paso de la corriente la corriente máxima en un resistor viene condicionado por la máxima potencia que puede disipar su cuerpo. Esta potencia se puede identificar visualmente a partir del diámetro sin que sea necesaria otra indicación. Los valores más corrientes son 0,25 W, 0,5 W y 1 W.


Existen resistencias de valor variable, que reciben el nombre de potenciómetros.


5-CONDENSADORES
En condensador es un dispositivo formado por dos placas metálicas separadas por un aislante llamado dieléctrico.


Un dieléctrico o aislante es un material que evita el paso de la corriente.
El condensador o capacitor almacena energía en la forma de un campo eléctrico (es evidente cuando el capacitor funciona con corriente directa) y se llama capacitancia o capacidad a la cantidad de cargas eléctricas que es capaz de almacenar

La capacidad depende de las características físicas del condensador:
- Si el área de las placas que están frente a frente es grande la capacidad aumenta
- Si la separación entre placas aumenta, disminuye la capacidad
- El tipo de material dieléctrico que se aplica entre las placas también afecta la capacidad
- Si se aumenta la tensión aplicada, se aumenta la carga almacenada


6-DIODO
Un diodo (del griego: dos caminos) es un dispositivo semiconductor que permite el paso de la corriente eléctrica en una única dirección con características similares a un interruptor. De forma simplificada, la curva característica de un diodo (I-V) consta de dos regiones: por debajo de cierta diferencia de potencial, se comporta como un circuito abierto (no conduce), y por encima de ella como un circuito cerrado con una resistencia eléctrica muy pequeña.
Debido a este comportamiento, se les suele denominar rectificadores, ya que son dispositivos capaces de suprimir la parte negativa de cualquier señal, como paso inicial para convertir una corriente alterna en corriente continua. Su principio de funcionamiento está basado en los experimentos de Lee De Forest.

Los primeros diodos eran válvulas grandes en chips o tubos de vacío, también llamadas válvulas termoiónicas constituidas por dos electrodos rodeados de vacío en un tubo de cristal, con un aspecto similar al de las lámparas incandescentes. El invento fue realizado en 1904 por John Ambrose Fleming, de la empresa Marconi, basándose en observaciones realizadas por Thomas Alva Edison.- Al igual que las lámparas incandescentes, los tubos de vacío tienen un filamento (el cátodo) a través del que circula la corriente, calentándolo por efecto Joule.


El filamento está tratado con óxido de bario, de modo que al calentarse emite electrones al vacío circundante; electrones que son conducidos electrostáticamente hacia una placa característica corvada por un muelle doble cargada positivamente (el ánodo), produciéndose así la conducción. Evidentemente, si el cátodo no se calienta, no podrá ceder electrones. Por esa razón los circuitos que utilizaban válvulas de vacío requerían un tiempo para que las válvulas se calentaran antes de poder funcionar y las válvulas se quemaban con mucha facilidad.

7-POTENCIOMETRO
Un potenciómetro es un resistor al que se le puede variar el valor de su resistencia. De esta manera, indirectamente, se puede controlar la intensidad de corriente que hay por una línea si se conecta en paralelo, o la diferencia de potencial de hacerlo en serie.

Normalmente, los potenciómetros se utilizan en circuitos con poca corriente, para potenciar la corriente, pues no disipan apenas potencia, en cambio en los reóstatos, que son de mayor tamaño, circula más corriente y disipan más potencia.

TIPOS DE POTENCIOMETROS
Según su aplicación se distinguen varios tipos:

*Potenciómetros de mando:
Son adecuados para su uso como elemento de control en los aparatos electrónicos. El usuario acciona sobre ellos para variar los parámetros normales de funcionamiento. Por ejemplo, el volumen de una radio.

*Potenciómetros de ajuste: Controlan parámetros preajustados, normalmente en fábrica, que el usuario no suele tener que retocar, por lo que no suelen se accesibles desde el exterior. Existen tanto encapsulados en plástico como sin cápsula, y se suelen distinguir potenciómetros de ajuste vertical, cuyo eje de giro es vertical, y potenciómetros de ajuste horizontal, con el eje de giro paralelo al circuito impreso.

Según la ley de variación de la resistencia R = ρ(θ):

*Potenciómetros lineales: La resistencia es proporcional al ángulo de giro.
*Logarítmicos. La resistencia depende logarítmicamente del ángulo de giro.
*Sinusoidales: La resistencia es proporcional al seno del ángulo de giro. Dos potenciómetros sinusoidales solidarios y girados 90° proporcionan el seno y el coseno del ángulo de giro. Pueden tener topes de fin de carrera o no.
*Antilogarítmicos...

En los potenciómetros impresos la ley de resistencia se consigue variando la anchura de la pista resistiva, mientras que en los bobinados se ajusta la curva a tramos, con hilos de distinto grosor.

*Potenciómetros multivuelta: Para un ajuste fino de la resistencia existen potenciómetros multivuelta, en los que el cursor va unido a un tornillo desmultiplicador, de modo que para completar el recorrido necesita varias vueltas del órgano de mando.

TIPOS DE POTENCIOMETROS DE MANDO

-Potenciómetros rotatorios: Se controlan girando su eje. Son los más habituales pues son de larga duración y ocupan poco espacio.

-Potenciómetros deslizantes: La pista resistiva es recta, de modo que el recorrido del cursor también lo es. Han estado de moda hace unos años y se usa, sobre todo, en ecualizadores gráficos, pues la posición de sus cursores representa la respuesta del ecualizador. Son más frágiles que los rotatorios y ocupan más espacio. Además suelen ser más sensibles al polvo.

-Potenciómetros múltiples: Son varios potenciómetros con sus ejes coaxiales, de modo que ocupan muy poco espacio. Se utilizaban en instrumentación, autorradios, etc.

POTENCIOMETROS DIGITALES
Se llama potenciómetro digital a un circuito integrado cuyo funcionamiento simula el de un potenciómetro. Se componen de un divisor resistivo de n+1 resistencias, con sus n puntos intermedios conectados a un multiplexor analógico que selecciona la salida. Se manejan a través de una interfaz serie (I2C, Microwire, o similar). Suelen tener una tolerancia en torno al 20% y a esto hay que añadirle la resistencia debida a los switches internos, conocida como Rwiper. Los valores más comunes son de 10K y 100K aunque varia en función del fabricante con 32, 64, 128, 512 y 1024 posiciones en escala logarítmica o lineal. Los principales fabricantes son Maxim, Intersil y Analog Devices. Estos dispositivos poseen las mismas limitaciones que los conversores DAC como son la corriente máxima que pueden drenar, que esta en el orden de los mA, la INL y la DNL, aunque generalmente son monotónicos.

8-BATERIA
Batería, batería eléctrica, acumulador eléctrico o simplemente acumulador, se le denomina al dispositivo que almacena energía eléctrica, usando procedimientos electroquímicos y que posteriormente la devuelve casi en su totalidad; este ciclo puede repetirse por un determinado número de veces. Se trata de un generador eléctrico secundario; es decir, un generador que no puede funcionar sin que se le haya suministrado electricidad previamente mediante lo que se denomina proceso de carga.

9-TRANSFORMADOR
Se denomina transformador a una máquina eléctrica que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna, manteniendo la frecuencia. La potencia que ingresa al equipo, en el caso de un transformador ideal, esto es, sin pérdidas, es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño, tamaño, etc.
Los transformadores son dispositivos basados en el fenómeno de la inducción electromagnética y están constituidos, en su forma más simple, por dos bobinas devanadas sobre un núcleo cerrado de hierro dulce o hierro silicio. Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados; en este caso, puede existir un devanado "terciario", de menor tensión que el secundario.

10-VOLTAJE
Tensión o diferencia de potencial expresado en voltios.

11-CORRIENTE
La corriente o intensidad eléctrica es el flujo de carga por unidad de tiempo que recorre un material. Se debe a un movimiento de los electrones en el interior del material. En el Sistema Internacional de Unidades se expresa en C·s-1 (culombios sobre segundo), unidad que se denomina amperio. Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético, lo que se aprovecha en el electroimán.

El instrumento usado para medir la intensidad de la corriente eléctrica es el galvanómetro que, calibrado en amperios, se llama amperímetro, colocado en serie con el conductor cuya intensidad se desea medir.

12-POTENCIA
Se define como la cantidad de energía eléctrica o trabajo; energía que se transporta o trabajo que se consume en una determinada unidad de tiempo.

Si la tensión se mantiene constante, la potencia es directamente proporcional a la corriente (intensidad). Ésta aumenta si la corriente aumenta.

13-INTENSIDAD
Cantidad de carga que atraviesa la sección de un conductor de la unidad de tiempo. La unidad es el amperio.

14-INTERRUPTOR
Un interruptor eléctrico es un dispositivo utilizado para desviar o interrumpir el curso de una corriente eléctrica. En el mundo moderno las aplicaciones son innumerables, van desde un simple interruptor que apaga o enciente un bombillo, hasta un complicado selector de transferencia automático de múltiples capas controlado por computadora.
Su expresión más sencilla consiste en dos contactos de
metal inoxidable y el actuante. Los contactos, normalmente separados, se unen para permitir que la corriente circule. El actuante es la parte móvil que en una de sus posiciones hace presión sobre los contactos para mantenerlos unidos.


15-PROTOBOARD
Una placa de pruebas, también conocida como protoboard o breadboard, es una placa de uso genérico reutilizable o semi permanente, usado para construir prototipos de circuitos electrónicos con o sin soldadura. Normalmente se utilizan para la realización de pruebas experimentales. Además de los Protoboard plásticos, libres de soldadura,también existen en el mercado otros modelos de placas de prueba.

De uso temporal
Patrón típico de disposición de las láminas de material conductor en un protoboard.ProtoBoard o Breadboard: Es en la actualidad las placas de prueba más usadas están compuestas por bloques de plástico perforados y numerosas láminas delgadas -de una aleación de cobre, estaño y fósforo; que unen dichas perforaciones, creando una serie de líneas de conducción paralelas. Las líneas se cortan en la parte central del bloque de plástico para garantizar que dispositivos en circuitos integrados tipo DIP (Dual Inline Packages), puedan ser insertados perpendicularmente a las líneas de conductores. En la cara opuesta se coloca un forro con pegamento, que sirve para sellar y mantener en su lugar a las tiras metálicas.

Un computador basado en el Motorola 68000-con varios circuitos TTL montados sobre una arreglo de protoboard.Debido a las características de capacitancia (de 2 a 30 pF por punto de contacto) y resistencia que suelen tener los protoboard están confinados a trabajar a relativamente baja frecuencias - inferiores a los 10 ó 20 MHz dependiendo del tipo y calidad de los componentes electrónicos utilizados.

Los demás componentes electrónicos pueden ser montados sobre perforaciones adyacentes que no compartan la tira o línea conductora e interconectados a otros dispositivos usando cables - usualmente unifilares. Uniendo dos o más protoboard es posible ensamblar complejos prototipos electrónicos que cuenten con decenas o cientos de componentes.

El nombre Protoboard es una contracción de los vocablos ingleses Prototype Board y es el término que se ha difundido ampliamente en los países de habla hispana. Sin embargo, particularmente en Estados Unidos e Inglaterra, se conoce como Breadboard. Anteriormente un Breadboard era una tablas utilizadas como base para cortar el pan pero en los principios de la electrónica los pioneros usaban dichas tablas para montar sus prototipos, compuestos por tubos de vacío, clavijas, etc. los cuales eran asegurados por medio de tornillos e interconectados usando cables.

De uso permanentes y/o temporal
PerfBoard con material conductor cerca a cada perforación.Perfboard: Placa de circuito perforada cuyos huecos están circundados por material conductor - usualmente cobre, pero que no están interconectados entre sí. Este tipo de placas requieren que cada componente este soldado a la placa y además las interconexiones entre ellos sea realizada a través de cables o caminos de soldadura.

stripboardStripboard: Es un tipo especial de perfboard con patrón en donde los agujeros están interconectados formando filas de material conductor.
Estos tipos de placas generalmente se fabrican uniendo una lámina de material conductor, usualmente cobre o una aleación de él; a una base de material plástico sintético denominado Baquelita. Cuando este tipo de placas se usan para construir Perfboard, Perfboard con patrón o stripboard; reciben el nombre genérico de "Baquelita Universal".

tipos de protoboard el quickboard el trupboard el flexboard

16-PARLANTE
Un altavoz (también conocido como parlante en América del Sur, Costa Rica, El Salvador y Nicaragua)[1] es un transductor electroacústico utilizado para la reproducción de sonido. Uno o varios altavoces pueden formar una pantalla acústica.
En la transducción sigue un doble procedimiento: eléctrico-mecánico-acústico. En la primera etapa convierte las ondas eléctricas en energía mecánica, y en la segunda convierte la energía mecánica en energía acústica. Es por tanto la puerta por donde sale el sonido al exterior desde los aparatos que posibilitaron su amplificación, su transmisión por medios telefónicos o radioeléctricos, o su tratamiento.

El sonido se transmite mediante ondas sonoras a través del aire. El oído capta estas ondas y las transforma en impulsos nerviosos que llegan al cerebro. Si se dispone de una grabación de voz, de música en soporte magnético o digital, o si se recibe estas señales por radio, se dispondrá a la salida del aparato de unas señales eléctricas que deben ser convertidas en sonidos audibles; para ello se utiliza el altavoz.

LAS PREMISAS DEL CAMPO ELECTRONICO

1) FLUJO DE LAS CORRIENTES ELECTRICAS
Solo circulan en una sola dirección de de mas a menos fuera de las fuentes electrónicas

2) LOS CIRCUITOS ELECTRONICOS
La función es rectificar, condensar, regular, filtrar y estabilizar las corrientes eléctricas.

3) PARAMETROS ELECTRONICOS BASICOS
Voltaje
Resistencia
Intensidad
Potencia

4)

CLASES DE MONITORES

MONITORES CRT

El monitor esta basado en un elemento CRT (Tubo de rayos catódicos), los actuales monitores, controlados por un microprocesador para almacenar muy diferentes formatos, así como corregir las eventuales distorsiones, y con capacidad de presentar hasta 1600x1200 puntos en pantalla. Los monitores CRT emplean tubos cortos, pero con la particularidad de disponer de una pantalla completamente plana.

FUNCIONAMIENTO DE UN MONITOR CRT

En la parte trasera del tubo encontramos la rejilla catódica, que envía electrones a la superficie interna del tubo. Estos electrones al estrellarse sobre el fósforo hacen que este se ilumine. Un CRT es básicamente un tubo vacío con un cátodo (el emisor de luz electrónico y un ánodo (la pantalla recubierta de fósforo) que permiten a los electrones viajar desde el terminal negativo al positivo. El yugo del monitor, una bobina magnética, desvía la emisión de electrones repartiéndolo por la pantalla, para pintar las diversas líneas que forman un cuadro o imagen completa.

Los monitores monocromos utilizan un único tipo de fósforo pero los monitores de color emplean un fósforo de tres colores distribuidos por triadas. Cada haz controla uno de los colores básicos: rojo, azul y verde sobre los puntos correspondientes de la pantalla.

A medida que mejora la tecnología de los monitores, la separación entre los puntos disminuye y aumenta la resolución en pantalla (la separación entre los puntos oscila entre 0.25mm y 0.31mm). Loa avances en los materiales y las mejoras de diseño en el haz de electrones, producirían monitores de mayor nitidez y contraste. El fósforo utilizado en un monitor se caracteriza por su persistencia, esto es, el periodo que transcurre desde que es excitado (brillante) hasta que se vuelve inactivo(oscuro).

MONITOR LCD – (Liquid Cristal Display)

La tecnología LCD es, hoy en día, una de las más pujantes y que más rápidamente evoluciona mejorándose continuamente.

Aunque la tecnología que los cristales líquidos es relativamente reciente, parte de las curiosas propiedades de los cristales líquidos ya fueron observados en 1888 cuando se experimentaba con una sustancia similar al colesterol, esta sustancia permanecía turbia a temperatura ambiente y se aclaraba según se calentaba; al enfriarse mas y mas azulado se tornaba de color hasta solidificarse y volverse opaca.

Este efecto paso desapercibido hasta que la compañía RCA aprovecho sus propiedades para crear el primer prototipo de visualizador LCD. A partir de ese momento el desarrollo y aplicación de estos dispositivos ha sido y es espectacular.

FUNCIONAMIENTO

El fenómeno LCD esta basado en la existencia de algunas sustancias que se encuentran en estado solidó y liquido simultáneamente, con lo que las moléculas que las forman tienen una capacidad de movimiento elevado, como en los líquidos, presentando además una tendencia a ordenarse en el espacio de una forma similar a los cuerpos sólidos cristalinos.

El display o visualizador LCD esta formado por una capa muy delgada d cristal liquido, del orden de 20 micras encerrada entre dos superficies planas de vidrio sobre las que están aplicados unos vidrios polarizados ópticos que solo permiten la transmisión de la luz según el plano horizontal y vertical.

El nombre cristal liquido es si mismo contradictorio, normalmente entendemos a los cristales como algo sólido y todo lo contrario para un liquido, aunque ambos puedan ser transparentes a la luz. Pues bien y por extraño que parezca, existen sustancias que tienen ambas características.

MONITORES DE PLASMA

Se basan en el principio de que haciendo pasar un alto voltaje por un gas a baja presión se genera luz. Estas pantallas usan fósforo como los CRT pero son emisivas como las LCD y frente a estas consiguen una gran mejora del color y un estupendo ángulo de visión.

Estas pantallas son como fluorescentes, y cada píxel es como una pequeña bombilla de color, el problema de esta tecnología es la duración y el tamaño de los píxeles, por lo que su implantación más común es en grandes pantallas de TV.

Están conformadas por miles y miles de píxeles que conforman la imagen, y cada píxel esta constituido por tres subpixeles, uno con fósforo rojo otro con verde y el último con azul, cada uno de estos subpixeles tienen un receptáculo de gas (una combinación de xenón, neón y otro gases).

Un par de electrodos en cada subpixel ioniza al gas volviéndolo plasma, generando luz ultravioleta que excita al fósforo que a su vez emite luz que en su conjunto forma una imagen.
Es por esta razón que se necesitaron 70 años para conseguir una nueva tecnología que pudiese conseguir mejores resultados que los CRT’s o cinescopios.

CARACTERISTICAS

El diseño de este tipo de productos permite q podamos colgarlo en la pared como si tratase de un cuadro. Las pantallas de plasma cuentan con un panel de celdas con las que consigue, mayores niveles de brillo y blancos mas puros, lo cual es una combinación que mejora los sistemas anteriores. Además, las imágenes son aun más nítidas, naturales y brillantes.

COMO FUNCIONA UN MONITOR DE COMPUTADORA

Según el tipo de computadora, existen dos tipos de pantallas, las de cristal líquido (LCD) que son las pantallas planas de las portátiles (Notebook), y las pantallas de las computadoras comunes de escritorio, que se basan en el concepto del Tubo de Rayos Catódicos.



A estas últimas nos referiremos en esta pagina.En el Tubo de Rayos Catódicos, un haz de electrones - que puede ser precisamente controlado en posición e intensidad- estimula periódicamente una pantalla recubierta internamente con fósforo, de tal forma que se "iluminan" los puntos que conformarán los caracteres (letras, números y signos) sobre dicha pantalla.



En los monitores color, la pantalla esta revestida internamente con una capa de trifósforo rojo, verde y azul, que es estimulada por tres cañones de electrones (uno para cada color). Las imágenes que se "pintan" en la pantalla, deben ser renovadas para que se mantengan estables (sin "parpadeos"), para lo cual los haces de electrones deberán pasar sobre la capa fosforescente con una frecuencia mayor a 65 Hertz (65 veces por segundo). Esto se llama "frecuencia de refresco" y depende de la tarjeta gráfica que tengamos instalada en nuestra computadora.

FALLAS MAS COMUNES DE LOS MONITORES

1- EL MONITOR ENCIENDE PERO QUEDA CON UNA RAYA EN SENTIDO VERTICAL:
En este caso esta fallando el circuito de deflexión horizontal

2- EL MONITOR ENCIENDE PERO QUEDA CON UNA RAYA EN SENTIDO HORIZONTAL:
En este caso está fallando el circuito de deflexión vertical

3- EL MONITOR ENCIENDE PRO QUEDA CON UN PUNTO EN EL CENTRO DE LA PANTALLA:
En este caso están fallando los circuitos de deflexión horizontal y vertical.

4- IMAGEN INESTABLE (TITILA):
La falla esta en el cable de lamentación de la imagen que va del monitor a la tarjeta de video de la CPU.
-Se arregla cambiando el cable, o en el circuito del final del cable que está en la placa base del cañón o en los circuitos oxiladores.
-Se verifica el puerto VGA la conexión (corriente)-
-La continuidad del cable desde el terminal del puerto hasta la terminal de la placa base del cañón.
-soldando e puerto de conexión de la placa base del cañón.
-Soldando los circuitos oxiladores.

5- LA IMAGEN ONDEA EN LOS BORDES COMO UNA BANDERA AL VIENTO:
Este problema se presenta cuando la pantalla esta muy cerca a una fuente de interferencia electromagnética tal como un estabilizador, un transformador de potencia, cables de alimentación eléctrica, TV, radio, celulares,etc.
Se soluciona separando el monitor de los campos magnéticos.

6- LA PANTALLA NO ENCIENDE Y LA CPU PITA VARIAS VECES SEGUIDAS:
O falla la tarjeta de video, la tarjeta de memoria (módulos) o incompatibilidad entre ellas.

7- LA IMAGEN ESTA INCLINADA O TORCIDA:
Se presenta cuando los usuarios a gusto distorsiona la presentación de la imagen en pantalla usando los redostotos en monitores antiguos, a los botones digitales en os monitores actuales.
Si con estos mismos botones no se resuelve el problema es desde el interior, aflojando los tornillos de la brazadera de aseguramiento del yugo y girando suavemente centrado en la pantalla.

8- PANTALLAS CON IMÁGENES COLORADAS:
Se presenta con mucha frecuencia por un campo magnético que causa interferencia al haz de electrones. En algunos casos este campo lo produce una magnetización reducida en la máscara de sombra y otros pueden ser externos al monitor-
-si es por causa externa el campo magnético; cambie de posición el monitor; si no mejora se debe revisar el estado de la bobina desmagnetizadora.

9- EL MONITOR ENCIENDE NORMAL PERO SOLO QUEDA EL LED ENCENDIDO EN COLOR AMARILLO Y NO DA IMAGEN:
Este caso se presenta en el cable de datos en el PIN13 porque hay una interrupción en el.

PINES Y SUS COLORES

PIN1: rojo
PIN2: verde
PIN3: azul
PIN4: no tiene conexión
PIN5: puenteado con el 2
PIN6: masa del 1,2,3
PIN7: masa del 1,2,3
PIN8: masa del 1,2,3
PIN9: no tiene conexión
PIN10: señal rastre del video de iluminancia
PIN11: puenteado con el 5
PIN12: tren de pulsos digitales
PIN13: señal de sincronismo horizontal va de 31105 a 56000 ciclos por segundo
PIN14: señal de sincronismo vertical
PIN15: señal portadora de reloj

CODIGO DE COLORES

NEGRO 0
MARRON 1
ROJO 2
NARANJA 3
AMARILLO 4
VERDE 5
AZUL 6
VIOLETA 7
GRIS 8
BLANCO 9
DORADO 5% DE TOLERANCIA
PLATA 10% DE TOLERANCIA

EL MONITOR Y LOS BLOQUES FUNCIONALES

1-FRENTE:
Es un vidrio de 18 a 16 mm de espesor (para que los rayos no lleguen directamente al usuario)
*CAPA FOSFORICA: recibe la exploración de los ases electrónicos producidos por los cátodos y así producir la imagen.
*MALLA O REJILLA DE SOMBRA FOSFORICA: filtra la energía para que no se refleje (que se devuelva)

2-CONO O CAMPANA:
Tiene como función recibir la extensión de los haces electrónicos producidos por los cátodos y aso producir la imagen.
Este esta formado por 2 capas de pintura metálica:
-externa ACUALAG carga negativa
-interna carga positiva
*CONDENSADOR DE FILTRADO DE ALTO VOLTAJE (OMBLIGO):
-Su carga se va hasta el electrodo llamado ANODO o placa máxima.
-maneja voltajes entre 8000 y 32000/36000 KW
-Las uniones forman condensadores de filtro de alto voltaje. (Mantener energía por un largo periodo de tiempo).

3-AMPOLLA O CAÑON ELECTRONICO TRC:
Formado por 3 cátodos su función es omitir partículas negativas que al cruzar el área polarizada positivamente forman el ARCO IONIZANTE que se convierte en punto luminoso de determinado color al chocar con la capa fosfórica.
*CALEFACTORES O FILAMENTOS: emiten calor para que los cátodos emitan electrones
*REJILLAS DE CONTROL: son electrodos internos de una pantalla, cuya función es manipular y controlar la emisión de electrones por los cátodos. Se identifican de acuerdo a su posición así:
REJILLA 1=G1: control de cantidad de electrones
REJILLA 2=G2: control de la velocidad
REJILLA 3=G3: controla el enfoque y corriente
REJILLA 4=G4: control de la desviación

No hay comentarios:

Publicar un comentario en la entrada